Energy Efficient Technology for Cold Chain

For India Japan Environment Week

13, Jan., 2023 Hiroyuki Egashira Mayekawa Mfg. Co., Ltd.

Mr. Hiroyuki Egashira

A former MD of Mayekawa India Pvt. Ltd.

Worked in India from 2006 to 2016.

Currently, working as the Senior Advisor, South Asia Region Operation and Business Development for Mayekawa Mfg. Co., Ltd.

A Founder Committee member of Association of Ammonia Refrigeration

Mobile: +81-8010085252 E-mail: hiroyuki-egashira@Mayekawa.co.jp

MAYEKAWA MFG. CO., LTD.

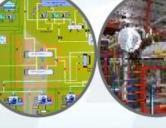
- Established
- □ Head Office
- Annual Turnover (Group)
- Employees

1924 Tokyo, Japan 150 billion JPY

4,700 (Global)

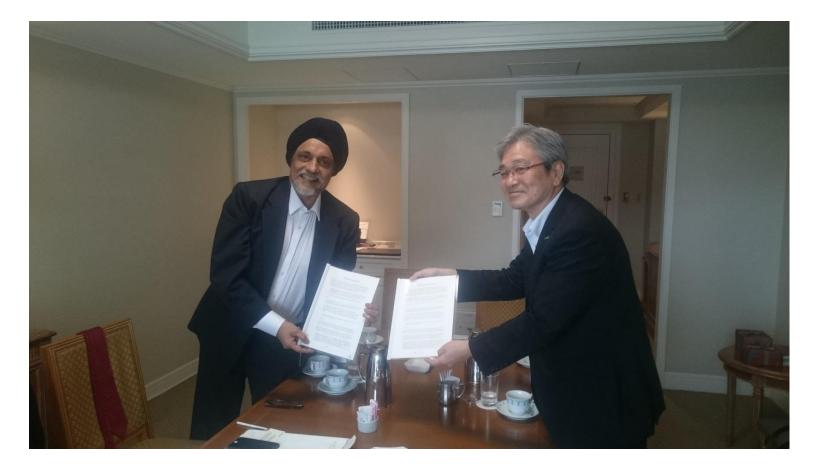
Existing System

Frick India Limited


A Leader in Industrial Refrigeration Equipment Manufacturer and Turnkey Solution Provider, Since 1962

MANUFACTURING INSTALLATIONS

IONS AUTON


AUTOMATION COMMISSIONING

SERVICING

You still can't beat the system when it's all FRICK INDIA

MEMORANDUM OF COLABORATION

MAYEKAWA-FRICK INDIA EXCLUSIVE TECHNICAL SUPPORT FOR ENERGY EFFICIENT AND ENVIROMENT FRIEDNLY SOLUTIONS SINCE 2018

Global Environment Issues

Ozone Depletion

Montreal Protocol

CFC : banned in 1996

HCFC : Limited from 2004

Totally Banned in 2020

Freon Recycling Law:

PRTR Law (chemical gas):

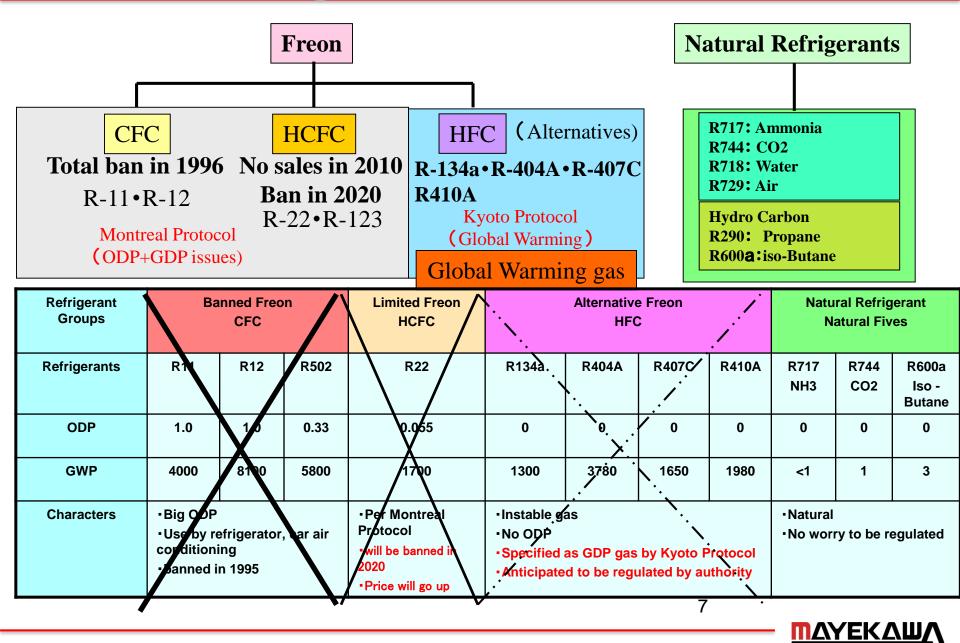
Kyoto Protocol

Reduction of global warming gas by 6% from 1990 level in the first period of 2008 \sim 2012). HFC are the target

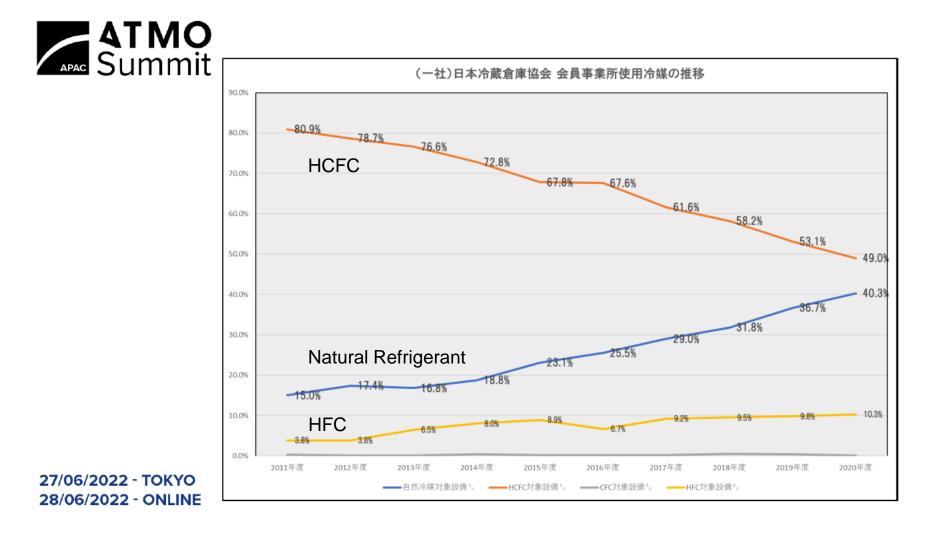
6

Global Warming

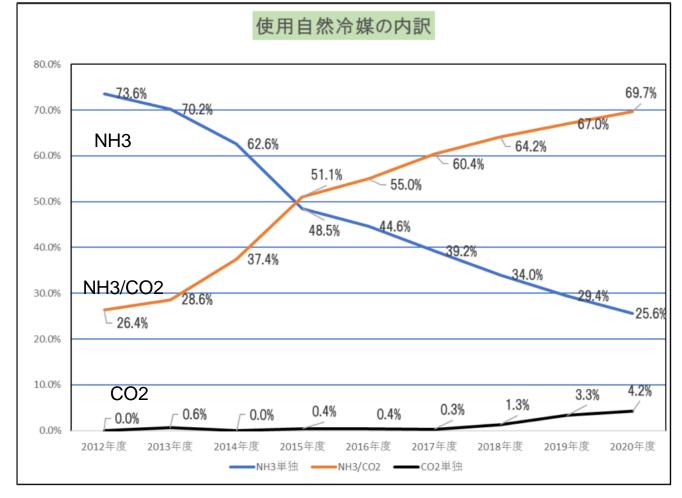
CFC,HCFC,HFC

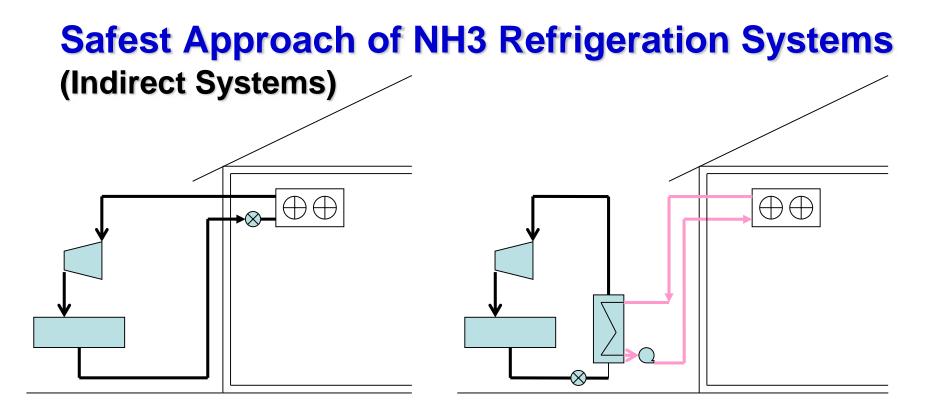

HCFC22, HCFC123, Ethylene glycol, etc.

Introduction of Environment Tax, Freon Tax to industries


Demand for use of Natural Refrigerant has increased

Future of refrigerants


Trend of Refrigerants in Japan/Cold Storage


Trend of Natural Refrigerant systems in Japan/Cold Storage

27/06/2022 - TOKYO 28/06/2022 - ONLINE

Direct method

- Potential leak in storage room
- ·Requires large amount of ammonia
- Simple system

Indirect method

- ·Least potential of leakage in storage room
- ·uses very small amount of ammonia
- -A bit more complicated system

NewTon: NH3-CO2 System

Energy Saving compared with R-22 Systems

Customer	Volume	Age	Refrigerant formerly used		Power reduction
	(m3)	(year)	Refrig.	Comp.	(%)
Tokyo Toyomi	45,000	29	HCFC-22	Screw	31.1
Niigata Reizo	10,000	33	HCFC-22	Recip.	41.2
QP "Kewpie"	16,250	27	HCFC-22	Recip.	24.9
Sensui Reizo	6,125	38	HCFC-22	Screw	29.3
Ajinomoto	7,500	25	HCFC-22	Recip.	28.0
Gliko	30,000	30	HCFC-22	Screw	19.8
Showa Reizo	32,500	22	HCFC-22	Recip.	28.0
AMB Funabashi	30,000	25	NH3/Brine	Recip.	34.0

Do they really have to be the systems from Japan?

System Outline

Freezer				
Room Temp:	-18deg.C.			
No. of Room	7	Rooms		
Room Size (m)	L	W	Н	
	8.5	20.5	12.5	
Pallte Per Room	350 pallet			
Estimated Capacity	28.8kW			
Compressor				
Carlyle 06CC899F200	8	8sets (1set stand-by)		
Chilled and Loading Area				
Room Temp:	5	deg.C.		
No. of Room	3Rooms			
Room Size	L	W	Н	
Room Size	8.5	20.5	12.5	
Pallte Per Room	350	pallet		
Compressor				
Carlyle 06EM799601	4 sets (1 set stand-by)			

Comparison of Installed Power

Capacity	236.7kW				240.5kW		
Existing				NH3-CO2 System	m N62K	x 5 sets	S
Equipment	Q'ty	Motor	Total	Equipment	Q'ty	Motor	Total
Condensing Unit	8	22.5	180	Compressor	5	30	150
Unit Cooler	7	2.48	17.36	Unit Cooler	7	2.48	17.36
Air Cooled Condenser	2	22.4	44.8	CO2 pump	1	2.2	2.2
				Eva. Condenser	1	5.15	5.15
Installed motor kW			242.16				174.7

Comparison of BkW at full load operations

Capacity	236.7kW				240.5kW		
Existing				NH3-CO2 System	N62K x	5sets	
Equipment	Q'ty	BkW	Total	Equipment	Q'ty	BkW	Total
Condensing Unit	7	19.38	135.66	Compressor	5	22.1	110.5
Unit Cooler	7	1.96	13.72	Unit Cooler	7	1.96	13.72
Air Cooled Condenser	2	14.4	28.8	CO2 pump	1	1.76	1.76
				Eva. Condenser	1	4.12	4.12
Total BkW at full load			178.18				130.1

BkW(kW) **Refrigeration Capacity(kW)**

BkW comparison at partial load

NH3-CO2 system gives better performance at all load.

By changing the refrigerant from R404A to NH3/CO2, 27% power reduction at full load is possible. In partial load conditions, the power reduction may be less, still some 20% reduction is achievable.

Japan is working toward the natural refrigerant cold chain.

Major shift is taking place through the governmental encouragements and the efforts of Individuals, industries and the professional and industrial associations.

For the use of natural refrigerant, India is in a good position. India can be a leader of the world by

- A) Encourage and Promote use of Ammonia in refrigeration application through incentives
- B) Guidance for the use of Ammonia refrigeration system through BIS standard

Free Standard provided by BIS via BSB Edge Private Limited to Manik Engineers -Pune(anand.joshi1968@gmail.com) 172.225.137.232 [for non-commercial use only].

> भारतीय मानक Indian Standard

IS 17773 : 2022

संवृत-परिपथ अमोनिया प्रशीतन प्रणाली — डिजाइन और संस्थापन की रीति संहिता (एएनएसआई/आईआईएआर 2 : 2014, एनईक्यू)

Closed-Circuit Ammonia Refrigeration System — Code of Practice for Design and Installation (ANSI/IIAR 2 : 2014, NEQ)

ICS 71.060; 13.300; 27.200

© BIS 2022

भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDARDS मानक भवन, 9 बहादुरशाह जफर मार्ग, नई दिल्ली – 110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELIH-110002 www.bis.gov.in www.standardsbis.in

Price Group 16

September 2022

BIS standard for Closed Circuit Ammonia Refrigeration System-Code of Practice for Design and installation.

It is compiled by the professionals of Association of Ammonia Refrigeration, and adopted as National Standard by the Bureau of India Standard

Established in 2012

[not-for-profit organization registered in Pune , Maharashtra, India]

Address : E8, Rahul Complex, Paud Road. Kothrud, Pune 411038 Phone : 7447454586 Email: <u>ammoniaindia@gmail.org</u> Website : www.ammoniaindia.org Aim >> To promote safe use of ammonia as refrigerant through education, training, information and standards.

Purpose >> To provide a platform for professionals, industry, technicians, endusers to meet, interact and work towards advance technology and safe practices with ammonia and other natural refrigerants.

This Purpose is achieved through >>

- ✓ Technical Seminars Advantage Ammonia
- ✓ Quarterly Newsletter
- ✓ Annual Event & Expo ARCON
- ✓ Technical Publications
- ✓ Skill Up gradation through Standards

AAR / Presentation / President / AGS / 2021

1

AAR Achievements

000

16000 +

Delegates Trained

Webinars

Members are manufacturers, consultants, contractors, Technical Professionals and End-Users of various organizations who are involved directly or indirectly with Ammonia as a Refrigerant. Apart from India we have members from countries like China, Singapore, Germany, UAE, Japan, USA, Sri Lanka and Vietnam.

Asia's Only Ammonia Convention ARCON

6 Publications Newsletter, Posters Pocket Guide Ind Ref Standards, Tech Reference books

AAR / Presentation / President / AGS / 2021

